Multivariate Discrete Splines and Linear Diophantine Equations

نویسنده

  • Rong-Qing Jia
چکیده

In this paper we investigate the algebraic properties of multivariate discrete splines. It turns out that multivariate discrete splines are closely related to linear diophantine equations. In particular, we use a solvability condition for a system of linear diophantine equations to obtain a necessary and sufficient condition for the integer translates of a discrete box spline to be linearly independent. In order to understand the local structure of discrete splines we develop a general theory for certain systems of linear partial difference equations. Using this theory we prove that the integer translates of a discrete box spline are locally linearly independent if and only if they are linearly independent. AMS Subject Classifications: 41 A 15, 41 A 63, 11 D 04, 39 A 10, 39 A 70

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete Truncated Powers And Lattice Points In Rational Polytope ∗

Discrete truncate power is very useful for studying the number of nonnegative integer solutions of linear Diophantine equations. In this paper, some detail information about discrete truncated power is presented. To study the number of integer solutions of linear Diophantine inequations, the generalized truncated power and generalized discrete truncated power are defined and discussed respectiv...

متن کامل

Symmetric Magic Squares and Multivariate Splines

We use multivariate splines to investigate linear diophantine equations and related problems in graph theory. In particular, we solve a conjecture of Stanley about symmetric magic squares. 0 Elsevier Science Inc., 1997

متن کامل

Diophantine Equations Related with Linear Binary Recurrences

In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...

متن کامل

Application of ‎F‎uzzy Bicubic Splines Interpolation for Solving ‎T‎wo-Dimensional Linear Fuzzy Fredholm Integral ‎Equations‎‎

‎In this paper‎, ‎firstly‎, ‎we review approximation of fuzzy functions‎ ‎by fuzzy bicubic splines interpolation and present a new approach‎ ‎based on the two-dimensional fuzzy splines interpolation and‎ ‎iterative method to approximate the solution of two-dimensional‎ ‎linear fuzzy Fredholm integral equation (2DLFFIE)‎. ‎Also‎, ‎we prove‎ ‎convergence analysis and numerical stability analysis ...

متن کامل

Sparse Solutions of Linear Diophantine Equations

We present structural results on solutions to the Diophantine system Ay = b, y ∈ Z ≥0 with the smallest number of non-zero entries. Our tools are algebraic and number theoretic in nature and include Siegel’s Lemma, generating functions, and commutative algebra. These results have some interesting consequences in discrete optimization.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993